Abstract
The goal of this article is to study the asymptotic behaviour of the solutions of linearized Navier–Stokes equations (LNSE), when the viscosity is small, in a general (curved) bounded and smooth domain in ℝ3 with a characteristic boundary. To handle the difficulties due to the curvature of the boundary, we first introduce a curvilinear coordinate system which is adapted to the boundary. Then we prove the existence of a strong corrector for the LNSE. More precisely, we show that the solution of LNSE behaves like the corresponding Euler solution except in a thin region, near the boundary, where a certain heat solution is added as a corrector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.