Abstract
In this paper we consider the problem of estimating a coefficient of a strongly elliptic partial differential operator in stochastic parabolic equations. The coefficient is a bounded function of time. We compute the maximum likelihood estimate of the function on an approximating space (sieve) using a finite number of the spatial Fourier coefficients of the solution and establish conditions that guarantee consistency and asymptotic normality of the resulting estimate as the number of the coefficients increases. The equation is assumed diagonalizable in the sense that all the operators have a common system of eigenfunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.