Abstract

ABSTRACT We consider the nonsteady flow of a micropolar fluid in a thin (or long) curved pipe via rigorous asymptotic analysis. Germano's reference system is employed to describe the pipe's geometry. After writing the governing equations in curvilinear coordinates, we construct the asymptotic expansion up to a second order. Obtained in the explicit form, the asymptotic approximation clearly demonstrates the effects of pipe's distortion, micropolarity and the time derivative. A detailed study of the boundary layers in space is provided as well as the construction of the divergence correction. Finally, a rigorous justification of the proposed effective model is given by proving the error estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.