Abstract

AbstractThe Ginzburg–Landau functional is a phase transition model which is suitable for classification type problems. We study the asymptotics of a sequence of Ginzburg–Landau functionals with anisotropic interaction potentials on point clouds Ψnwherendenotes the number data points. In particular, we show the limiting problem, in the sense of Γ-convergence, is related to the total variation norm restricted to functions taking binary values, which can be understood as a surface energy. We generalize the result known for isotropic interaction potentials to the anisotropic case and add a result concerning the rate of convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.