Abstract
We analyze an elliptic equation arising in the study of the gauged O(3) sigma model with the Chern–Simons term. In this paper, we study the asymptotic behavior of solutions and apply it to prove the uniqueness of stable solutions. However, one of the features of this nonlinear equation is the existence of stable nontopological solutions in R2, which implies the possibility that a stable solution which blows up at a vortex point exists. To exclude this kind of blow up behavior is one of the main difficulties which we have to overcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.