Abstract

Abstract We construct a dynamical system based on the Källén–Crafoord–Ghil conceptual climate model which includes the ice–albedo and precipitation–temperature feedbacks. Further, we classify the stability of various critical points of the system and identify a parameter which change generates a Hopf bifurcation. This gives rise to a stable limit cycle around a physically interesting critical point. Moreover, it follows from the general theory that the periodic orbit exhibits relaxation-oscillations that are a characteristic feature of the Pleistocene ice ages. We provide an asymptotic analysis of their behaviour and derive a formula for the period along with several estimates. They, in turn, are in a decent agreement with paleoclimatic data and are independent of any parametrization used. Whence, our simple but robust model shows that a climate may exhibit internal relaxation oscillations without any external forcing and for a wide range of parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call