Abstract

<p style='text-indent:20px;'>We study the asymptotic behavior of a three-dimensional elastic material reinforced with highly contrasted thin vertical strips constructed on horizontal iterated Sierpinski gasket curves. We use <inline-formula><tex-math id="M1">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>-convergence methods in order to study the asymptotic behavior of the composite as the thickness of the strips vanishes, their Lamé constants tend to infinity, and the sequence of the iterated curves converges to the Sierpinski gasket in the Hausdorff metric. We derive the effective energy of the composite. This energy contains new degrees of freedom implying a nonlocal effect associated with thin boundary layer phenomena taking place near the fractal strips and a singular energy term supported on the Sierpinski gasket.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.