Abstract

Turning points occur in many circumstances in fluid mechanics. When the viscosity is small, very complex phenomena can occur near turning points, which are not yet well understood. A model problem, corresponding to a linear convection-diffusion equation (e.g., suitable linearization of the Navier-Stokes or Bénard convection equations) is considered. Our analysis shows the diversity and complexity of behaviors and boundary or interior layers which already appear for our equations simpler than the Navier-Stokes or Bénard convection equations. Of course the diversity and complexity of these structures will have to be taken into consideration for the study of the nonlinear problems. In our case, at this stage, the full theoretical (asymptotic) analysis is provided. This study is totally new to the best of our knowledge. Numerical treatment and more complex problems will be considered elsewhere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.