Abstract

We study the possible scaling limits of percolation interfaces in two dimensions on the triangular lattice. When one lets the percolation parameter $p(N)$ vary with the size $N$ of the box that one is considering, three possibilities arise in the large-scale limit. It is known that when $p(N)$ does not converge to $1/2$ fast enough, then the scaling limits are degenerate, whereas if $p(N) - 1 / 2$ goes to zero quickly, the scaling limits are SLE(6) as when $p=1/2$. We study some properties of the (non-void) intermediate regime where the large scale behavior is neither SLE(6) nor degenerate. We prove that in this case, the law of any scaling limit is singular with respect to that of SLE(6), even if it is still supported on the set of curves with Hausdorff dimension equal to $7/4$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.