Abstract

In this study, a more general directional spreading function is developed that allows for asymmetric directional distributions. For multidirectional random waves that approach the shore obliquely over a planar slope, we demonstrate that directional asymmetry is generated due to wave refraction. The asymmetry created by refraction increases with the offshore peak wave direction. The present spreading function is compared to a preexisting symmetric spreading function and is shown to better capture changes in the directional distribution that occur in a refracting, random wave field. Finally, the new asymmetric spreading function is compared to a long time series of wave directional spectra measured at a nearshore field site. The results demonstrate that refraction-induced asymmetry is common in the nearshore and the asymmetric spreading function gives an improved analytic representation of the overall directional distribution as compared to the symmetric function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.