Abstract

Design strategies for molecular thermometers by magnetic resonance are essential for enabling new noninvasive means of temperature mapping for disease diagnoses and treatments. Herein we demonstrate a new design strategy for thermometry based on chemical control of the vibrational partition function. To do so, we performed variable-temperature 59Co NMR investigations of four air-stable Co(iii) complexes: Co(accp)3 (1), Co(bzac)3 (2), Co(tBu2-acac)3 (3), and Co(acac)3 (4) (accp = 2-acetylcyclopentanonate; bzac = benzoylacetonate; tBu2-acac = 2,2,6,6-tetramethyl-3,5-heptanedionate and acac = acetylacetonate). We discovered 59Co chemical shift temperature sensitivity (Δδ/ΔT) values of 3.50(2), 3.39(3), 1.63(3), and 2.83(1) ppm °C-1 for 1-4, respectively, at 100 mM concentration. The values observed for 1 and 2 are new records for sensitivity for low-spin Co(iii) complexes. We propose that the observed heightened sensitivities for 1 and 2 are intimately tied to the asymmetry of the accp and bzac ligands versus the acac and tBu2-acac ligands, which enables a larger number of low-energy Raman-active vibrational modes to contribute to the observed Δδ/ΔT values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call