Abstract

Unequal first cleavage is characteristic of a diverse group of protostome animals. In the nematode Caenorhabditis elegans, unequal first cleavage is achieved through the interaction of an apparently symmetric mitotic spindle apparatus with a clearly polarized cell cortex. In the clitellate annelid Tubifex tubifex, by contrast, the spindle is monastral and contains only one gamma-tubulin-reactive centrosome; this monastral spindle is inherently asymmetric throughout mitosis. Here, we have used immunostaining for beta- and gamma-tubulin to follow spindle dynamics during the unequal first cleavage in another clitellate annelid, the leech Helobdella robusta. We find that the mitotic spindle is diastral and symmetric through early metaphase, then becomes asymmetric following the transient down-regulation of one centrosome, as judged by gamma-tubulin immunofluorescence. Low levels of drugs that affect microtubule dynamics can symmetrize the first cleavage without affecting the gamma-tubulin dynamics. Our results provide a striking example of the evolvability of cellular mechanisms underlying an unambiguously homologous developmental process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.