Abstract

AbstractLithium–sulfur (Li–S) batteries are receiving great attention owing to their large theoretical energy density, but the shuttle effect and sluggish kinetic conversion of lithium polysulfides (LiPSs) seriously restrict their practical applications. Herein, various metal single‐atom catalysts immobilized on nitrogen‐doped Ti3C2Tx (M SA/N‐Ti3C2Tx, M = Cu, Co, Ni, Mn, Zn, In, Sn, Pb, and Bi) are successfully prepared by a neoteric vacancy‐assisted strategy, applied as polypropylene (PP) separator coatings to facilitate the fast redox conversion and adsorption of LiPSs for boosting Li–S batteries. Of particular note, among the M SA/N‐Ti3C2Txs, Cu SA/N‐Ti3C2Tx/PP exhibits amazing properties, involving excellent rate performance (925 mAh g−1 at 3 C), superb cycling stability over 1000 cycles, and ultra‐high sulfur utilization even at large sulfur loadings (7.19 mg cm−2; an areal capacity of 5.28 mAh cm−2). X‐ray absorption fine spectroscopy and density functional theory calculations reveal that the asymmetrically coordinated Cu–N1C2 moieties act as the active sites, which possess a higher binding energy and a larger electron cloud with LiPSs than pristine Ti3C2Tx, facilitating the adsorption and kinetic conversion of LiPSs effectively. This work may provide new insights into single atom‐decorated ultrathin 2D materials for enhancing electrochemical performance of advanced batteries for energy storage and conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.