Abstract
Asymmetrically branched precision glycooligomers are synthesized by solid-phase polymer synthesis for studying multivalent carbohydrate-protein interactions. Through the stepwise assembly of Fmoc-protected oligo(amidoamine) building blocks and Fmoc/Dde-protected lysine, straightforward variation of structural parameters such as the number and length of arms, as well as the number and position of carbohydrate ligands, is achieved. Binding of 1-arm and 3-arm glycooligomers toward lectin receptors langerin and concanavalin A (ConA) was evaluated where the smallest 3-arm glycooligomer shows the highest binding toward langerin, and stepwise elongation of one, two, or all three arms leads to decreased binding. When directly comparing binding toward langerin and ConA, we find that structural variation of the scaffold affects glycomimetic ligand binding differently for the different targets, indicating the potential to tune such ligands not only for their avidity but also for their selectivity toward different lectins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.