Abstract

ZnO nanowire was bent in a high-resolution transmission electron microscope (HRTEM). The growth process of tensile and compressive stress-induced asymmetrical ZnO quantum dots (QDs) on bent ZnO nanowire (NW) surface was observed in situ at the atomic scale. The positionally resolved atomic-level strain distribution along the radial directions was mapped directly from the atomic-level strained HRTEM images of the bent ZnO NW. The size, growth rate and density of the QDs can be significantly affected by the strain type and magnitude. These results are helpful in controlling the fabrication of ZnO QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.