Abstract

The structural organization of ion channels formed in lipid membranes by amphiphilic α-helical peptides is deduced by applying direct structural methods to different lipid/alamethicin systems. Alamethicin represents a hydrophobic α-helical peptide antibiotic forming voltage-gated ion channels in lipid membranes. Here the first direct evidence for the existence of large-scale two-dimensional crystalline domains of alamethicin helices, oriented parallel to the air/water interface, is presented using synchrotron x-ray diffraction, fluorescence microscopy, and surface pressure/area isotherms. Proofs are obtained that the antibiotic peptide injected into the aqueous phase under phospholipid monolayers penetrates these monolayers, phase separates, and forms domains within the lipid environment, keeping the same, parallel orientation of the α-helices with respect to the phospholipid/water interface. A new asymmetrical, “lipid-covered ring” model of the voltage-gated ion channel of alamethicin is inferred from the structural results presented, and the mechanism of ion-channel formation is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.