Abstract

During molar development from the cap to bell stage, the morphology of the enamel knots, inner dental epithelium, and epithelial-mesenchymal junction dynamically changes, leading to the formation of multiple cusps. To study the basic histological features of this morphogenetic change, we have investigated the cell arrangement, mitosis, and apoptosis simultaneously in the developing first lower molar of the mouse by means of BrdU injection and immunostaining for P-cadherin, BrdU, and single-stranded DNA. At the typical cap stage, the primary enamel knot shows a characteristic cell arrangement, absence of mitosis, and abundant apoptosis, but also actively dividing cells at its lateral margins. Two secondary enamel knots then appear in the anterior part of the tooth germ. One is completely non-proliferating, whereas the other contains dividing cells, indicating asymmetrical growth of the inner dental epithelium. From this transitional stage to the early bell stage, additional minor BrdU-negative domains appear, and at the same time, the cell arrangement in the inner dental epithelium rapidly changes to show regional differences. Comparisons between the histology and the distribution of BrdU-positive cells have revealed that both the regionally different cell rearrangement and the differential cell proliferation in the enamel knots and inner dental epithelium probably play a significant role in multiple cusp formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.