Abstract

Asymmetrical flow field-flow fractionation (AF4) with sequential on-line UV/visible and fluorescence detectors was used to investigate the composition of dissolved organic matter (DOM) in permeate and retentate fractions isolated by tangential flow ultrafiltration (TFF) at various concentration factors (i.e. ratio of initial volume to the retentate volume; CF). The permeation coefficient model, which defines the log-log relationship between DOM in the permeate fractions and CFs, described the permeation behaviour of DOM with regression coefficients r 2 > 0.99. The dominance of higher-molecular weight retentate chromophoric DOM (CDOM) observed in TFF was consistent with the results of AF4. The weight-averaged molecular weights (M w) of the integral permeate and retentate at CF = 20 were determined to be 1160 and 2320 by AF4, respectively, while their molecular weight distributions (MWD) were centered at 1120 and 1600 Da. M w, MWD, and aromaticity (i.e. ratio of absorbance at 250 and 365 nm; E2/E3) in permeate fractions were altered significantly during the early stages of TFF (CF < 9). These changes, however, were not evident in excitation-emission matrix fluorescence properties as determined using the parallel factor analysis model. The application of AF4 to TFF fractions suggests that the choice of CF may have an important impact on the size distribution and aromaticity of permeate fractions, whereas fluorescence properties appear insensitive to concentration factor. These results suggest that the choice of CF is crucial only in the study of the permeate fraction where similar CF (i.e. > 9) should be used to obtain meaningful comparison among samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call