Abstract

Silica has the potential to enhance the performance of ceria-zirconia as a support for the dry reforming of methane; however, controlling the integration of silica with the ceria-zirconia using flame spray pyrolysis (FSP) is a significant challenge. To address this challenge, an asymmetrically variable double-FSP (DFSP) system was established to control the SiO2 interaction with Ce0.7Zr0.3O2. The engineered materials were then utilized as supports for Ni for the dry reforming of methane. Initially, silica formation during FSP synthesis was examined where it was revealed that, at a low precursor concentration (<1.5 M tetraethyl orthosilicate in xylenes), the physical characteristics of the silica varied differently in relation to what is typically encountered during FSP synthesis. Explicitly, on using a 0.5 M tetraethyl orthosilicate precursor, increasing the FSP feed rate provided an increase in the specific surface area from 217 m2/g at 3 mL/min to 363 m2/g at 7 mL/min. Adopting this knowledge on silica formation under these conditions, the asymmetrical DFSP system was then exploited to regulate the integration of ceria-zirconia with the silica. To restrict the silica from coating the particles during DFSP, the intersection distance along the silica flame was tuned from 18.5 to 28.5 cm, whereas the distance along the ceria-zirconia flame was fixed at 5 cm. It was found that at short intersection distances the ceria-zirconia provided sites for silica nucleation and growth, resulting in high surface-area silica encapsulating the ceria-zirconia. At large intersection distances, encapsulation of the ceria-zirconia by silica was suppressed. An enhanced oxygen storage capacity and basicity along with the small Ni sizes facilitated by the longer intersection distances produced the most selective catalyst for the dry reforming of methane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.