Abstract

In wireless sensor networks (WSNs) with symmetric duty cycles, a block design technique produces an optimal solution for neighbor discovery in terms of the worst-case discovery latency. However, block design-based neighbor discovery methods may not be applicable to WSNs with asymmetric duty operations. Thus, to address this lack of support of asymmetric WSNs, we propose a new neighbor discovery protocol (NDP) that combines two block designs for generating a set of discovery schedules. We prove that the discovery schedule generated by the proposed NDP includes at least one common active slot with any neighboring nodes within a single cycle. We also conduct a simulation study and show that the proposed NDP is better than representative NDPs such as U-Connect, Disco, SearchLight, Hedis, and Todis in terms of discovery latency and energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.