Abstract
Twin support vector regression (TSVR) aims at finding 𝜖-insensitive up- and down-bound functions for the training points by solving a pair of smaller-sized quadratic programming problems (QPPs) rather than a single large one as in the conventional SVR. So TSVR works faster than SVR in theory. However, TSVR gives equal emphasis to the points above the up-bound and below the down-bound, which leads to the same influences on the regression function. In fact, points in different positions have different effects on the regressor. Inspired by it, we propose an asymmetric ν-twin support vector regression based on pinball loss function (Asy- ν-TSVR). The new algorithm can effectively control the fitting error by tuning the parameters ν and p. Therefore, it enhances the generalization ability. Moreover, we study the distribution of samples and give the upper bounds for the samples locating in different positions. Numerical experiments on one artificial dataset, eleven benchmark datasets and a real wheat dataset demonstrate the validity of our proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.