Abstract

Molecular hole-transporting materials (HTMs) having triphenylethylene central core were designed, synthesized, and employed in perovskite solar cell (PSC) devices. The synthesized HTM derivatives were obtained in a two- or three-step synthetic procedure, and their characteristics were analyzed by various thermoanalytical, optical, photophysical, and photovoltaic techniques. The most efficient PSC device recorded a 23.43% power conversion efficiency. Furthermore, the longevity of the device employing V1509 HTM surpassed that of PSC with state-of-art spiro-OMeTAD as the reference HTM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.