Abstract

To more closely resemble the structure of natural skin, multi-layered wound dressings have been developed. Herein, a tri-layer wound dressing was prepared containing a polyacrylamide (PAAm)-Aloe vera (Alo) sponge that had been incorporated with insulin-like growth factor-1 (IGF1) to provide a porous absorbent layer, which was able to promote angiogenesis. Alo nanofibers with multi-walled carbon nanotubes (MWCNT) were electrospun into the bottom layer to increase cell behavior, and a small film of stearic acid was put as a top layer to avoid germy penetration. In comparison to bilayer dressing, the tensile strength increased by 17.0 % (from 0.200 ± 0.010 MPa to 0.234 ± 0.022 MPa) and the elastic modulus by 45.6 % (from 0.217 ± 0.003 MPa to 0.316 ± 0.012 MPa) in the presence of Alo nanofibers containing 0.5 wt% of MWCNT at the bottom layer of Trilayer0.5 dressing. The release profile of IGF1, the antibacterial activity and the degradability of different wound dressings were investigated. Trilayer0.5 indicated the highest cell viability, cell adhesion and angiogenic potential among the prepared dressing materials. In-vivo rat model revealed that the Trilayer0.5 dressing treated group had the highest rate of wound closure and wound healing within 10 days compared to other groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.