Abstract
Interest in asymmetric transmission (AT) at terahertz frequencies has increased dramatically in recent years. We present an all-silicon metamaterial to achieve the AT effect for linearly polarized electromagnetic waves in the terahertz regime. The metamaterial is constructed by rectangular silicon pillars and a thick silicon substrate. The magnetic Mie resonance excited by the incident polarized terahertz wave contributes to the AT effect, which is verified by the field distributions. In addition, the rotation angle and dimensions of the silicon pillars are shown to have a great influence on the AT efficiency. The proposed metamaterial with straightforward design has promising applications in polarization control scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.