Abstract

In this work, we propose an asymmetric transmission structure (ATS) for elastic shear vertical (SV) waves in solids, which has been relatively unexplored. The ATS is constituted by a metasurface and a phononic crystal (PC) possessing a directional band gap. While the metasurface aims to redirect the incident wave, the PC acts as a directional filter. The metasurface is composed of a stacked array of composite plates with two connecting parts made of different materials. To examine the performance of the designed ATS, full numerical simulations have been conducted. The numerical results indicate that the proposed ATS offered a relatively broad working frequency band and had a one order of magnitude difference in terms of transmission between the positive and negative incidences. Our study provides an alternative method to control elastic SV waves and could benefit applications in various fields, such as Micro-Electro-Mechanical System (MEMS), in which thin plates are frequently used components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.