Abstract

Reactions of the bis(bidentate) Schiff-bases N,N'-bis(6-alkyl-2-pyridylmethylene)ethane-1,2-diamine (where alkyl = H, Me, iPr) (L) with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluorophosphate afforded, respectively, the double-stranded, dinuclear metal helicates [T-4-(R,R)]-(+/-)-[M2L2](PF6)2 (M = Cu, Ag). The helicates were characterized by 1H and 13C NMR spectroscopy, conductivity, microanalysis, and single-crystal X-ray structure determinations on selected compounds. Intermolecular ligand exchange and intramolecular inversion rates for the complexes were investigated by 1H NMR spectroscopy. Reversible intermolecular ligand exchange between two differently substituted helicates followed first-order kinetics. The rate constants (k) and corresponding half-lives (t(1/2)) for ligand exchange for the dicopper(I) helicates were k = (1.6-1.8) x 10(-6) s(-1) (t(1/2) = 110-120 h) in acetone-d6, k = 4.9 x 10(-6) s(-1) (t(1/2) = 40 h) in dichloromethane-d2, and k > 2 x 10(-3) s(-1) (t(1/2) < 5 min) in acetonitrile-d3. Ligand exchange for the disilver(I) helicates occurred with k > 2 x 10(-3) s(-1) (t(1/2) < 5 min). Racemization of the dicopper(I) helicate by an intramolecular mechanism was investigated by determination of the coalescence temperature for the diastereotopic isopropyl-Me groups in the appropriate complex, and DeltaG() >> 76 kJ mol(-1) was calculated for the process in acetone-d6, nitromethane-d3, and dichloromethane-d2 with DeltaG() = 75 kJ mol(-1) in acetonitrile-d3. Complete anion exchange of the hexafluorophosphate salt of a dicopper(I) helicate with the enantiomerically pure Delta-(-)-tris(catecholato)arsenate(V) ([As(cat)3]-) in the presence of Dabco gave the two diastereomers (R,R)-[Cu2L2][Delta-(-)-[As(cat)3]]2 and (S,S)-[Cu2L2][Delta-(-)-[As(cat)3]]2 in up to 54% diastereomeric excess, as determined by (1)H NMR spectroscopy. The diastereomerically and enantiomerically pure salt (R,R)-[Cu(2)L2][Delta-(-)-[As(cat)3]]2 crystallized from the solution in a typical second-order asymmetric transformation. The asymmetric transformation of the dicopper(I) helicate is the first synthesis of a diastereomerically and enantiomerically pure dicopper(I) helicate containing achiral ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.