Abstract

Cerebral asymmetries are a ubiquitous phenomenon evident in many species, incl. humans, and they display some similarities in their organization across vertebrates. In many species the left hemisphere is associated with the ability to categorize objects based on abstract or experience-based behaviors. Using the asymmetrically organized visual system of pigeons as an animal model, we show that descending forebrain pathways asymmetrically modulate visually evoked responses of single thalamic units. Activity patterns of neurons within the nucleus rotundus, the largest thalamic visual relay structure in birds, were differently modulated by left and right hemispheric descending systems. Thus, visual information ascending towards the left hemisphere was modulated by forebrain top-down systems at thalamic level, while right thalamic units were strikingly less modulated. This asymmetry of top-down control could promote experience-based processes within the left hemisphere, while biasing the right side towards stimulus-bound response patterns. In a subsequent behavioral task we tested the possible functional impact of this asymmetry. Under monocular conditions, pigeons learned to discriminate color pairs, so that each hemisphere was trained on one specific discrimination. Afterwards the animals were presented with stimuli that put the hemispheres in conflict. Response patterns on the conflicting stimuli revealed a clear dominance of the left hemisphere. Transient inactivation of left hemispheric top-down control reduced this dominance while inactivation of right hemispheric top-down control had no effect on response patterns. Functional asymmetries of descending systems that modify visual ascending pathways seem to play an important role in the superiority of the left hemisphere in experience-based visual tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call