Abstract
Despite the long-standing exploration of the catalytic asymmetric Tsuji-Trost allylation reaction since the mid-20th century, most reported instances have adhered to a two-component approach. Here, we present a remarkably efficient three-component asymmetric allylation reaction enabled by the collaborative action of chiral aldehyde and palladium. A diverse array of NH2-unprotected amino acid esters, aryl or alkenyl iodides, and allyl alcohol esters exhibit robust participation in this reaction, resulting in the synthesis of structurally diverse non-proteinogenic α-amino acid esters with favorable experimental outcomes. Mechanistic investigations reveal the dominance of the allylation/Heck coupling cascade in reactions involving electron-rich aryl iodides, while the Heck coupling/allylation cascade emerges as the dominant pathway in reactions involving electron-deficient aryl iodides. This chiral aldehyde/palladium combining catalytic system precisely governs the chemoselectivity of C-allylation and N-allylation, the regioselectivity of linear and branched allylation, and the enantioselectivity of C-allylation products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.