Abstract
Abstract We present a lubrication model of thermo-capillary flows in moving volatile liquid film coatings. The forced air impingement from a slit nozzle onto the moving coating imposes an axi-symmetric surface temperature distribution, and thus the local surface-tension gradients on the liquid surface. Despite the symmetric temperature profile, local thickness variations became asymmetric and exhibited a particular ridge in downstream and a depression in upstream. The competing feature between the surface-tension-driven and the pressure-driven flows gives a characteristic growth and decay in the surface roughness as the temperature profile travels in the opposite direction to the moving coating. The model prediction showed that the surface roughness was first enhanced and then suppressed with increasing the impinging air velocity, suggesting some directions for achieving more uniform coatings at higher speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.