Abstract

BackgroundAllopolyploid genome needs wide structural variation to deal with genomic shock. The introgression line, generated via asymmetric somatic hybridization, is introgressed with a minimum of exogenous chromatin, which also leads to genomic shock to induce genetic variation. However, the extent of its genomic variation and its difference from allopolyploidies remains unknown.MethodsHere, we explored this issue using the bread wheat cultivar SR3, a derivative of an asymmetric somatic hybrid between the cultivar JN177 and an accession of tall wheatgrass (Thinopyrum elongatum). The ESTs (expressed sequence taqs) were large-scale sequenced using the cDNA library constructed in each of SR3 and JN177. Point mutations and indels (insertions and deletions) of SR3 were calculated, and their difference from the genetic variation of bread wheat and its ancestors were compared, with aim to analyze the extent and pattern of sequence variation induced by somatic hybridization.ResultsBoth point mutations and indels (insertions and deletions) were frequently induced by somatic hybridization in the coding sequences. While the genomic shock caused by allopolyploidization tends to favor deletion over insertion, there was no evidence for such a preference following asymmetric somatic hybridization. The GC content of sequence adjacent to indel sites was also distinct from what has been observed in allopolyploids.ConclusionsThis study demonstrates that asymmetric somatic hybridization induces high frequency of genetic variation in a manner partially different from allopolipoidization. Asymmetric somatic hybridization provides appropriate material to comprehensively explore the nature of the genetic variation induced by genomic shock.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1974-6) contains supplementary material, which is available to authorized users.

Highlights

  • Allopolyploid genome needs wide structural variation to deal with genomic shock

  • We found that the genome of SR3 and other derivatives occurred high frequency of genetic variation using a set of molecular biomarker assays [31], and had numerous single nucleotide polymorphisms (SNPs) and insertion/deletion when comparing genomic sequences of glutenin gene family [32]

  • Frequency of single nucleotide polymorphisms (SNPs) in the unigene sequences Based on the unigene sequences sharing >96 % identity, 15,226 SNPs were identified within the unigene sequence shared between SR3 and JN177, equivalent to a SNP frequency of 11.33 per 1000 nt of coding sequence (Table 2)

Read more

Summary

Introduction

Allopolyploid genome needs wide structural variation to deal with genomic shock. The introgression line, generated via asymmetric somatic hybridization, is introgressed with a minimum of exogenous chromatin, which leads to genomic shock to induce genetic variation. The wild relatives represent a valuable genetic resource for breeders. Introgressing genetic material from a wild species is conventionally attempted via sexual hybridization [1, 2], but somatic hybridization (the induced fusion of somatic cells, followed by their in vitro regeneration) can offer an alternative route, especially where viable sexual hybrids have proven difficult or impossible to establish [3]. The first brought together the genomes of an as yet unidentified (possibly extinct) member of the Sitopsis section of the genus Aegilops (B genome) and T. urartu (A genome) to form the allotetraploid BA genome species T. turgidum [6]. The second event involved a domesticated form of T. turgidum and Ae. tauschii

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.