Abstract

Double cross polarization (DCP) has been widely used for heteronuclear polarization transfer between 13C and 15N in solid-state magic-angle spinning (MAS) NMR. However, DCP is such sensitive to experimental settings that small variations or deviations in RF fields would deteriorate its efficiency. Here, we report on asymmetric simultaneous phase-inversion cross polarization (referred as aSPICP) for selective polarization transfer between low-γ 13C and 15N spins. We have demonstrated through simulations and experiments using biological solids that the asymmetric duration in the simultaneous phase-inversion cross polarization scheme leads to efficient polarization transfer between 13C and 15N even with large chemical shift anisotropies in the presence of B1 field variations or mismatch of the Hartmann–Hahn conditions. This could be very useful in the aspect of long-duration experiments for membrane protein studies at high fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.