Abstract
A highly enantioselective Rh(I)-catalyzed intramolecular [3 + 2] cycloaddition of 1-yne-VCPs to bicyclo[3.3.0] compounds with an all-carbon chiral quaternary stereocenter at the bridgehead carbon was developed. DFT calculations of the energy surface of the catalytic cycle (complexation, cyclopropane cleavage, alkyne insertion, and reductive elimination) of the asymmetric [3 + 2] cycloaddition reaction indicated that the rate- and stereo-determining step is the alkyne-insertion step. Analysis of the alkyne-insertion transition states revealed that the serious steric repulsion between the substituents in the alkyne moiety of the substrates and the rigid H(8)-BINAP backbone is responsible for not generating the disfavored [3 + 2] cycloadducts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.