Abstract
Divergence in song between allopatric populations can contribute to premating reproductive isolation in territorial birds. Song divergence is typically measured by quantifying divergence in vocal traits using audio recordings, but field playback experiments provide a more direct way to behaviorally measure song divergence between allopatric populations. The White-breasted Wood-Wren (Henicorhina leucosticta; hereafter “WBWW”) is an abundant Neotropical species with four mitochondrial clades (in Central America, the Darién, the Chocó and the Amazon) that are deeply divergent (~5–16% sequence divergence). We assessed the possibility that the WBWW as currently defined may represent multiple biological species by conducting both statistical analysis of vocal characters and field playback experiments within three clades (Central America, Chocó and Amazon). Our analysis of vocal traits revealed that Central American songs overlapped in acoustic space with Chocó songs, indicating vocal similarity between these two populations, but that Central American songs were largely divergent from Amazonian songs. Playback experiments in the Caribbean lowlands of Costa Rica revealed that Central American WBWWs typically responded aggressively to songs from the Chocó population but did not respond to playback of songs from the Amazonian population, echoing the results of the vocal trait analysis. This marked difference in behavioral response demonstrates that the songs of Central American and Amazonian WBWWs (but not Central American and Chocó WBWWs) have diverged sufficiently that Central American WBWWs no longer recognize song from Amazonian WBWWs as a signal to elicit territorial defense. This suggests that significant premating reproductive isolation has evolved between these two populations, at least from the perspective of the Central American population, and is consistent with the possibility that Central American and Amazonian populations represent distinct biological species. We conclude by advocating for the further use of field playback experiments to assess premating reproductive isolation (and species limits) between allopatric songbird populations, a situation where behavioral systematics can answer questions that phylogenetic systematics cannot.
Highlights
Ecologists, evolutionary biologists and conservation biologists all require rigorous taxonomies to conserve species and understand ecological and evolutionary patterns and processes
We focused on the Central American, Chocó and Amazon clades for our analysis, because the geographic distributions of these clades are sufficiently well defined that audio recordings could be unequivocally identified to clade
This difference in behavioral response to field experiments is consistent with our vocal trait analysis, which showed songs from the Central American clade to be closest in acoustic space to the Chocó clade and furthest in acoustic space from the Amazon clade
Summary
Ecologists, evolutionary biologists and conservation biologists all require rigorous taxonomies to conserve species and understand ecological and evolutionary patterns and processes. Genetic divergence can be used to determine species limits if the evolution of reproductive isolation is correlated with evolutionary time such that species with large genetic distances (e.g., > 4% sequence divergence in mitcochondrial DNA (mtDNA) [7]) are unlikely to experience gene flow if they come into secondary contact. This may not always be the case [8] and there is some evidence that the evolution of reproductive isolation is slow in the tropics [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.