Abstract
Asymmetric bioreduction of aromatic and heteroaromatic ketones is an important process in the production of precursors of biologically active molecules. In this study, the bioreduction of aromatic and hetero aromatic prochiral ketones into optically active alcohols was investigated using Lactobacillus senmaizukei as a whole-cell catalyst, since whole-cells are less expensive than pure enzymes. The study indicates enantioselective bioreduction of various substituted aromatic ketones (1–16) to the corresponding (R)-and (S)-chiral secondary alcohols (1a–16a) in low to excellent enantioselectivity (6–94%) with good yields (58–95%). In addition, heteroaromatic prochiral ketones 1-(pyridin-2-yl)ethanone (17) and 1-(furan-2-yl)ethanone (18) were reduced to (R)-17a and (R)-18a in enantiopure form with excellent conversion (>99%) and yields. These findings show that L. senmaizukei is a very important biocatalyst for asymmetric reduction of both 6-membered and 5-member heteroaromatic methyl ketones. This method promising a green synthesis for the synthesis of biologically important secondary chiral alcohols in an environmentally friendly and inexpensive process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.