Abstract

Secondary alcohol dehydrogenase (SADH) from Thermoanaerobacter ethanolicus, an NADP-dependent, thermostable oxidoreductase, reduces ethynyl ketones and ethynylketoesters enantioselectively to the corresponding propargyl (propargyl = prop-2-ynyl) alcohols. Ethynyl ketones, in general, are reduced with moderate enantioselectivity (with the exception of 4-methylpent-1-yn-3-one, which gives the (S)-alcohol with >98% ee). Although ethynyl ketones bearing a small (up to n-propyl) alkyl substituent are reduced to (S)-alcohols, larger ethynyl ketones give (R)-alcohols. In contrast, ethynylketoesters are converted to (R)-ethynylhydroxyesters of excellent optical purity. Unexpectedly, isopropyl ethynylketoesters give higher chemical yields and higher enantioselectivities of ethynylhydroxyesters than methyl or ethyl ethynylketoesters. The optically pure ethynylhydroxyesters may serve as useful chiral building blocks for asymmetric synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.