Abstract

Considering the current available experimental studies on the dynamical Casimir effect (DCE) in superconducting microwave waveguides, we study asymmetric quantum correlations in microwave radiation. The asymmetric quantum correlations are created by the presence of detuning in the DCE. We study the asymmetric quantum steering and determine the parameter regions of one- and two-way quantum steering. It shows that steering from Bob to Alice is more difficult than steering from Alice to Bob. Moreover, we find regions that represent states that, although entangled, cannot be used for teleporting coherent states; however, the steerable states are appropriate for quantum teleportation. We investigate how the teleportation fidelity functions as an indicator of the quality of EPR steering in the DCE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.