Abstract

Co-evolutionary theory assumes co-adapted characteristics are a positive response to counter those of another species, whereby co-evolved species reach an evolutionarily stable interaction through bilateral adaptation. However, evidence from the fig-fig wasp mutualistic system implies very different co-evolutionary selection mechanisms, due to the inherent conflict among interacted partners. Fig plants appear to have discriminatively enforced fig wasps to evolve "adaptation characteristics" that provide greater benefit to the fig, and fig wasps appear to have diversified their evolutionary strategies in response to discriminative enforcement by figs and competition among different fig wasp species. In what appears to be an asymmetric interaction, the prosperity of cooperative pollinating wasps should inevitably lead to population increases of parasitic individuals, thus resulting in localized extinctions of pollinating wasps. In response, the sanctioning of parasitic wasps by the fig should lead to a reduction in the parasitic wasp population. The meta-populations created by such asymmetric interactions may result in each population of coevolved species chaotically oscillated, temporally or evolutionarily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.