Abstract
In this work we calculate the total mass, radius, moment of inertia, and surface gravitational redshift for neutron stars using various equations of state (EOS). Modern meson-exchange potential models are used to evaluate the $G$-matrix for asymmetric nuclear matter. We calculate both a non-relativistic and a relativistic EOS. Of importance here is the fact that relativistic Brueckner-Hartree-Fock calculations for symmetric nuclear matter fit the empirical data, which are not reproduced by non-relativistic calculations. Relativistic effects are known to be important at high densities, giving an increased repulsion. This leads to a stiffer EOS compared to the EOS derived with a non-relativistic approach. Both the non-relativistic and the relativistic EOS yield moments of inertia and redshifts in agreement with the accepted values. The relativistic EOS yields, however, too large mass and radius. The implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.