Abstract

Applying an asymmetric strategy to construct non-fullerene small-molecule acceptors (NFSMAs) in organic solar cells (OSCs) plays a vital role in the development of organic photovoltaic materials. In the past several years, taking advantage of the larger dipole moment and stronger intermolecular interactions, asymmetric NFSMAs have witnessed tremendous progress in OSCs with a power conversion efficiency of over 18%. From a structural point of view, besides the possible changes in the conformation effect on molecular packing, asymmetric acceptors can also achieve a balance between the solubility and the crystallinity. Herein, we systematically investigate the structure–property–performance relationships of asymmetric NFSMAs that have recently emerged and try to clarify the feasibility and practicality of an asymmetric strategy for the design of higher-performance NFSMAs. Finally, we put forward our views and a concise outlook on the asymmetric strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.