Abstract

The size of air bubbles in nematic liquid crystals can be continuously decreased through the absorption of air molecules into the host liquid crystal. A bubble and its accompanying hyperbolic hedgehog point defect undergo a continuous asymmetric motion, while the bubble decreases in size. In this study, a mechanism is proposed to theoretically explain both the motion of the air bubble and the point defect observed experimentally. Anisotropic evaporation of air molecules may occur because of the symmetry breaking of the director configuration near the point defect. The motion of the center of the air bubble to the hyperbolic hedgehog point defect is induced by the anisotropic force due to evaporation of air molecules and Stokes drag force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call