Abstract
Residence times of a particle in both the wells of a double-well system, under the action of zero-mean Gaussian white noise and zero-averaged but temporally asymmetric periodic forcings, are recorded in a numerical simulation. The difference between the relative mean residence times in the two wells shows monotonic variation as a function of asymmetry in the periodic forcing and for a given asymmetry the difference becomes largest at an optimum value of the noise strength. Moreover, the passages from one well to the other become less synchronous at small noise strength as the asymmetry parameter (defined below) differs from zero, but at relatively larger noise strengths the passages become more synchronous with asymmetry in the field sweep. We propose that asymmetric periodic forcing (with zero mean) could provide a simple but sensible physical model for unidirectional motion in a symmetric periodic system aided by a symmetric Gaussian white noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.