Abstract

The one-speed, time-dependent, isotropically scattering, integral transport equation in a homogeneous sphere has been converted into a criticality-like problem by considering exponential time behaviour of the scalar flux. This criticality problem has been converted into a matrix eigenvalue problem using the Fourier transform technique. The time eigenvalues lambda , which are complex in general, have been determined for spherically symmetric as well as asymmetric modes. For the former case, the real decay constants and the real parts of complex decay constants decrease monotonically with increasing system size and form two distinct families of single-valued functions. For the spherically asymmetric modes, certain new features emerge. The real decay constants are found to be multi-valued functions of system size and they do not always decrease monotonically with increasing system size. As the system size increases from zero onwards, the decay constants alternate between complex and real values and the real and complex decay constant curves interlace.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call