Abstract
The study of the relationship between the concentration of PM2.5 and the local air quality index (AQI) is significant for the improvement of urban air quality. This study not only considered multifractal cross-correlation but also the fluctuation conduction mechanism. An asymmetric multifractal detrended cross-correlation analysis (MF-DCCA) method based on fluctuation conduction is introduced here to empirically explore the causality and conduction time between air quality factors and PM2.5 concentration. The empirical results indicate the existence of a bidirectional fluctuation conduction effect between PM2.5 and PM10, SO2, and NO2 in Hangzhou, China, with a conduction time of 30 hours; this effect is non-existent between PM2.5 and O3. In addition, there is a unidirectional fractal fluctuation conduction between PM2.5 and CO with a conduction time of 21 hours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.