Abstract

ABSTRACTMatrix-valued covariance functions are crucial to geostatistical modelling of multivariate spatial data. The classical assumption of symmetry of a multivariate covariance function is overly restrictive and has been considered as unrealistic for most of the real data applications. Despite of that, the literature on asymmetric covariance functions has been very sparse. In particular, there is some work related to asymmetric covariances on Euclidean spaces, depending on the Euclidean distance. However, for data collected over large portions of planet Earth, the most natural spatial domain is a sphere, with the corresponding geodesic distance being the natural metric. In this work, we propose a strategy based on spatial rotations to generate asymmetric covariances for multivariate random fields on the d-dimensional unit sphere. We illustrate through simulations as well as real data analysis that our proposal allows to achieve improvements in the predictive performance in comparison to the symmetric counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.