Abstract

Human lung is known to be an asymmetric dichotomously branched network of bronchioles. Existing literature on the relation between anatomy and air-flow physics in the tracheobronchial trees has discussed the results of asymmetry. We discuss a secondary (but an important) lung function to seek asymmetry: to protect the acinus from a high pathogen load. We build morphometric parameter-based mathematical models of realistic bronchial trees to explore the structure-function relationship. We observe that maximum surface area for gas exchange, minimum resistance and minimum volume are obtained near the symmetry condition. In contrast, we show that deposition of inhaled foreign particles in the non-terminal airways is enhanced by asymmetry. We show from our model, that the optimal value of asymmetry for maximum particle filtration is within 10% of the experimentally measured value in human lungs. This structural trait of the lung aids in self-defence of the host against pathogen laden aerosols. We explain how natural asymmetric design of typical human lungs makes a sacrifice away from gas exchange optimality to gain this protection. In a typical human lung, when compared to most optimal condition (which is associated with symmetric branching), the fluidic resistance is 14% greater, the gas exchange surface area is about 11% lower, the lung volume is about 13% greater to gain an increase of 4.4% protection against foreign particles. This afforded protection is also robust to minor variations in branching ratio or variation in ventilation, which are both crucial to survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call