Abstract

We study the existence of one-dimensional localized states supported by linear periodic potentials and a domain-wall-like Kerr nonlinearity. The model gives rise to several new types of asymmetric localized states, including single- and double-hump soliton profiles, and multihump structures. Exploiting the linear stability analysis and direct simulations, we prove that these localized states are exceptional stable in the respective finite band gaps. The model applies to Bose–Einstein condensates loaded onto optical lattices, and in optics with period potentials, e.g., the photonic crystals and optical waveguide arrays, thereby the predicted solutions can be implemented in the state-of-the-art experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.