Abstract
We study, to the best of our knowledge, the first observations of light propagation in synthetic photonic lattice with anti-parity-time symmetry by tuning the gain or loss of two coupled fiber rings alternatively and corresponding phase distribution periodically. By tuning the phase φ and the wave number Q in the lattice, asymmetric transmission of the light field can be achieved for both long and short loops when φ≠nπ/2 (n is an integer). Further investigations demonstrate that asymmetric localization of the light field in the long loop and symmetric diffraction-free transmission in two loops can both be realized by changing these two parameters. Our work provides a new method to obtain anti-parity-time symmetry in synthetic photonic lattice and paves a broad way to achieve novel optical manipulation in photonic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.