Abstract

A photodetector is a key device to extend the cognition fields of mankind and to enrich information transfer. With the advent of emerging nanomaterials and nanophotonic techniques, new explorations and designs for photodetection have been constantly put forward. Here, we report the asymmetric-light-excitation photoelectric detectors with symmetric electrical contacts working at zero external bias. Unlike conventional photodetectors with symmetric contacts which are usually used as photoconductors or phototransistors showing no photocurrent at zero bias, in this device, the asymmetric-light-excitation structure is designed to ensure that only one Schottky junction between two metallic electrodes and semiconductors is illuminated. In this condition, a device can contribute to a photocurrent without bias. Furthermore, incident light with global illumination will be redistributed by the top Au patterns on devices. The achievement of detectors benefits from the designed redistribution of optical field on specific Schottky barriers within optically active regions and effective carrier collection, producing unidirectional photocurrent for large-scale detection applications. The response mechanisms, including excitations under different polarizations, wavebands, and tilted incidences, were systematically elaborated. Device performances including photocurrent, dynamic response, and detectivity were also carefully measured, demonstrating the possibility for applications in high-speed imaging sensors or integrated optoelectronic systems. The concept of asymmetric-light-excitation photodetectors shows wider availability to other nanomaterials for modern optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.