Abstract
The leaf primordium derives from the peripheral zone of shoot apical meristem. During the formation of leaf primordia, they need to establish the proximodistal, mediolateral, and ab/adaxial axes. Among these axes, the ab/adaxial axis might be the most important. ASYMMETRIC LEAVES2 (AS2) gene is a member of AS2/LATERAL ORGAN BOUNDARY (LOB) family of Arabidopsis thaliana. In this work, we transformed 35S:AS2 transgene constructs to cockscomb (Celosia cristata) via Agrobacterium tumefaciens. All primary transformants subsequently obtained were placed into phenotypic categories and self-pollinated. As a whole, a total of 44 T1 35S:AS2 cockscomb plants obtained were grouped into two major categories: (I) slightly wrinkled leaves (28/44), (II) extremely curved leaves (16/44), on the basis of their leaf phenotypes. Furthermore, we characterized the anatomical features of these malformed leaves; and found the transformation of adaxial cell types into abaxial cell ones. A series of data suggest that AS2 might be involved in the determination of abaxial polarity in cockscomb plants. However, a few research teams have reported that AS2 might be involved in the determination of adaxial polarity in leaf primodia of Arabidopsis thaliana. These data above indicate that the roles of the same ab/adaxial determinant might differ between distinct species. At last, the different function of AS2 in distinct species was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.