Abstract

The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the most popular approaches in time series classification. This method suffers from high storage and computation requirements for large training sets. As a solution to both drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed generic LVQ scheme uses asymmetric weighted averaging as update rule. We theoretically justify the asymmetric LVQ scheme via subgradient techniques and by the margin-growth principle. In addition, we show that the decision boundary of two prototypes from different classes is piecewise quadratic. Empirical results exhibited superior performance of asymmetric generalized LVQ (GLVQ) over other state-of-the-art prototype generation methods for nearest neighbor classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.